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Summary. Yamada's  method of  estimating genetic co- 
variances between traits measured in different experi- 
mental units is discussed. It is shown that if the data 
are unbalanced, this method gives biased estimates of  
genetic covariances unless the traits have identical 
genetic and residual variances. An alternative unbiased 
procedure is suggested. 
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Introduction 

Estimates of  genetic covariances are used to predict 
correlated responses to selection and to rank prospec- 
tive parents on the basis of  multivariate data. Methods 
used to estimate components of  variance can also be 
used to estimate covariance components for two traits 
described by the same linear model. However, when 
this is not possible, e.g., two traits measured in dif- 
ferent sexes, other methods are needed. 

Schaeffer etal. (1978) introduced simultaneous variance 
and covariance component estimation by restricted maximum 
likelihood for traits described by different mixed models. In 
situations where the mixed model does not include inter- 
actions between random and fixed factors or random factors 
nested within fixed classifications, genetic covariances can be 
estimated from functions of least-squares solutions (Wiggans 
et al. 1980). 

Another approach to estimate genetic covariance between 
characters measured in different experimental units is to 
regard the two traits as realizations of a single variable (Ya- 
mada 1962). The model includes a fixed factor representing 
the mean of the trait under different conditions (e.g., ovula- 
tion rate in females and testes weight in males), a random 
classification representing genotype (e.g., sire group), and the 
"trait" by genotype interaction as a random effect. The rela- 

tionship between analysis of variance (ANOVA) estimates of 
variance components from this model and the genetic cor- 
relation (Robertson 1959; Dickerson 1962; Yamada 1962) is 
then used to estimate the latter. 

The objective o f  this paper is to show that this rela- 
tionship does not hold in general and, in particular, 
when the data are unbalanced. A procedure leading to 
an unbiased estimator of  genetic covariance between 
traits measured in different experimental units is sug- 
gested. 

Yamada's method 

Falconer (1952) used the concept of  genetic correlation 
between traits to evaluate response to selection in an 
environment different from the one in which breeding 
of  parents took place, regarding as different the same 
character expressed in two environments. Robertson 
(1959) and Dickerson (1962) further developed the un- 
derlying theory. Yamada (1962) suggested analyzing 
the two traits with a univariate linear model including 
a fixed factor (environment or trait), a random factor 
(genotype or genetic group), and their interaction; the 
method would also be applicable to entirely different 
traits. When the variance among genetic groups is the 
same in both environments, the genetic correlation (r) 
can be estimated as 

(1) 

where #~ and #2 are ANOVA estimators of  the genetic- 
group and the genotype x environment interaction vari- 
ance components, respectively, obtained from balanced 
data. Yamada (1962) showed that with balanced data, 
the estimate obtained with (1) is identical to the one 
that would result from a one-way analysis of  covari- 



176 R. L. Fernando et al.: Genetic correlation between characters measured in different experimental units 

ance with genetic group as the classification variable. 
The relationships are 

6.2 = ~,2 (2 a) 

i (~2 + 6.22) (2b) 6.6 + 6.1 = 

where 6.~z is the estimator of  genetic covariance, and 6.12 
and 6.22 are the estimators of  genetic variance for traits 1 
and 2, respectively. When al 2= 0-2, the expression 
_l (#lz + 6.2) yields an unbiased estimator of  al 0"2. When 2 

2 2 0-I 4: a2, Yamada (1962) suggested using 

+ 6.2_ "}- (O. 1 + 6.2) + 6.1 6.2 ( 3 )  

as the denominator in (1). However, in view of  (2b), 
this is tantamount to using 6.1 6.2 as denominator  in (1). 

Relationships between estimators do not necessarily 
imply parametric relationships. It can be shown, in 
completely general terms, that the one-way analysis of 
covariance and the two-way analysis of  variance mod- 
els used by Yamada (1962) are not equivalent unless 
the two traits have identical heritabilities and residual 
variances. Two models are defined to be equivalent if 
the first and second moments of  the variable being 
analyzed are the same under both models. Consider 
first the one-way analysis of  covariance model (Mod- 
el A): 

,[y,:] . (4) 

where Yi is the ni x 1 vector of  data for trait i, i = 1, 2, 
and ni is the number of observations for trait i; gi is the 
expected value of  trait i and I i is an nix 1 vector of  
ones; ui is a vector of  genetic-group effects for trait i 
with the order of ul equal to the order of  u2; Zi is a 
known matrix relating ui to Yi, and ei is the ni x 1 vector 
of  residuals for trait i. Location assumptions for Mod- 
el A are 

E (Yi) = li lai, E (Ui)  = 0, 

Dispersion matrices are 

u2 . l a ,2  I a 2 ]  ' 

E ( e i )  = 0 .  (5 )  

(6) 

where I, I1 and 12 a r e  identity matrices of  appropriate 
order. If residuals are uncorrelated with genetic group 
effects, then 

Var [  yl] = [Z '  Z] 0-2 Zt Z2 ~ [ I 2' 0 ] 2  
(7) 

[ z 2 z 1 0 - , 2  . 1 . 2  - 

Next, describe the data with the two-way analysis of  
variance model (Model B): 

I'] [z01.,+~ 
Y Y2 [ lz g2] [ Z2J Z2 

where Yi, ~i, ii and Zi are as defined earlier; uo is a 
vector of genetic-group effects averaged over environ- 
ments; u~ is a vector of  genotype x environment inter- 
action effects, and e i is a vector of  residual effects. Ex- 
pectations and covariance matrices of  random varia- 
bles in Model B are assumed to be 

E (Yi) = li P-i, E (uG) = 0, E (u,) = 0, E (e) = 0 (9) 

and 

Var (uc) = 1 0-~, Var (u0 = 1 0-~, Var (e) = 1 0-~. 

With uG, ui and e pairwise independent, 

Var 
[,,] z, zq 
Y2 [Z2Z~ Z2Z~] 

+ [  ZIZIO Z~Z~]~  I02] ~ (10) 

The variables analyzed have the same expectation 
under Models A and B. The following relationships 
should hold for these models to be equivalent: 

Parameter 

i) Variance of trait 1 
ii) Variance of  trait 2 

iii) Covariance between indi- 
viduals in same genetic 
group, trait 1 a~ 

iv) Covariance between indi- 
viduals in same genetic 
group, trait 2 a22 

v) Covariance between traits 
1 and 2 measured in differ- 
ent individuals of  same 
genetic group, a l2 

Model A Model B 

d + d 2  

& + 0-i 

o-g+ 0-i z 

The above indicate that Models A and B are equivalent 
only when 0-12= 0-22 and 0-2,= 0-~,. When 0-12 4= 0-2 or 
0 -2' :# O -2 ,2, no meaningful relationships exist between the 
parameters of the two models. Hence, the method of  
Yamada (1962) should not be used in a general 
setting. 

As pointed out, the estimate of  genetic correlation 
obtained with the two models is the same when the 
data are balanced. However, if the layout is unbal- 
anced, Yamada's (1962) procedure would lead to an 
unbiased estimator of  0-t2 only if 0-2 = a2 and 0-~1 = a2 e 2 �9 
Yamada's (1962) method, however, has been used in 
more general situations (Hohenboken and Brinks 1971; 
Tewolde 1981). To illustrate, consider data from 2 ran- 
dom genetic groups and 2 fixed environments. The 
number of observations per genetic-group x environ- 
ment subclass is assumed to be the following 
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Genetic group 1 Genetic group 2 
Environment 1 5 1 
Environment 2 2 1 

Because the layout is unbalanced and the model de- 
scribing the records is mixed, ANOVA estimators of 
components of variance are biased (Searle 1971). One 
possibility would be to use Henderson's Method 3 
(Henderson 1953) to estimate the genetic-group (a~), 
genotype x environment interaction (a~) and residual 
(a~) variance components of Model B. For this two-way 
mixed model with interaction, and with the subclass 
numbers given above, Model B can be written as 

y =  X l ~ +  X2UG+ X3uI+ e 

where 

y' = [y], y~], /1' = [ , l ,  g2], 

-1 0- 
1 0 
I 0 

,0 [z:] [z l XI= 1 0 , X2-~ X3 : I 0 
I 0 ' Z2 
0 1 

1 
~ 1 

1 0 
Z , =  1 ~ and Z2= , �9 

Obtaining Method 3 estimates involves equating 
the quadratic functions R (/~), R (/I, uG), R (/~, uc,  ui) 
and y ' y  to their expectations; y ' y  is the total sum of 
squares and R(-) indicates a reduction in sums of 
squares as in Searle (1971). Let Wl = X1, Wz = [X~, X2] 
and W3=[XI,Xz, X3]. The reductions in sums of 
squares can be written as 

e (if) = y, Wl (W~ Wl)- W~ y, 

R ~ ,  uG) = y' W2 (Wl W2)- Wl y, 

and 

R (ll, uG, ul) = y' W3 (W;  W3) -  W~ y ,  

where (Wf Wi)- is a generalized inverse of Wf Wi, 
i = 1 . . . . .  3. Because R (fl, uc, ui) = R (p, u0, this can 
be more easily obtained as y 'W4(W~W4)-W~y,  
where W4 = [Xt, X3]. The expected values of the above 
quadratics are calculated as 

E (y' Qi y) = tr [Qi Var (y)] + E (y') Qi E (y), (11) 

where Qi = Wi (W~ Wi)- Wf (Searle 1971). The expect- 
ed value of the total sum of squares can be obtained 

with (11) using Qi=Ina+n,. The expected value of 
Y' Qi y can be evaluated under Models A and B by re- 
placing Var (y) in (11) by (7) and (10). These expecta- 
tions include a linear combination of the unknown va- 
riance components and/1' Xt (X~ X1)- X~/~ in all four of 
them. This term can be eliminated, thus reducing the 
system to be solved to one of three equations. The sys- 
tem of equations on a~, a~ and a~ (Model B) can be 
written as 

E (h) = B 0B, (12) 

where b' = [R (/I, uG) - R (~), R (/~, u6, u0 - R (/~), 
y' y - R (~)], B is a 3 • 3 matrix usually of full rank, and 
0~ = [a~, a{, a~]. The Method 3 estimator of 0B is 

OB= B-1 b. (13) 

and 

E (~fB) = B-l E (b) = 0B (14) 

so OB is an unbiased estimator of 0~. 
The expected value of/iB can also be evaluated in 

terms of 

0~, = [a~, at2,422, a~z~, 423, (15) 

a vector containing the parameters of Model A. Hence, 

E (/~B) = n-1 E (b) = B - t  A 0A (16) 

where A 0A is the expected value of b under Model A, 
and A is a 3x 5 matrix, the elements of which are ob- 
tained from (l 1) by using (7) for Var (y). 

For the data in the example, 

.93 1.48 .59 .56 .44] 
A =  1.67 0 1.33 1.00 1.00 , /  

1.67 0 1.33 5.00 2.00] 

3 1.52 1 ] 
B =  3 3 2 , 

3 3 7 

and 

.i57 1 -.057 
B- IA  = . -1  .5 

0 0 

.043 -.043 ] 

-.243.8 .'22431' 

Thus, the relationship between the parameters of Mod- 
el B and those of Model A is 

E (b~) = .057 a~ + alz - .057 a~ + .043 a~1- .043 a~ 

E (~) = .5 a~ - a,2 + .5 az 2 - .243 a~1 + .243 a~ 

and 

E (~'~) = .8 crY1+ .2 a~,. 

If the genetic correlation between the two traits is 
calculated as suggested by Yamada (1962), the numer- 
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ator in equation (1) would be a biased es t imator  o f  a12 
unless a 2=  a 2 and a~ 12 __ a~,.2 When  the assumpt ion 
al  2= a 2 and a~,= ae 2, can be just if ied,  the expected 
value of  the denomina tor  in equat ion (1) is 

E (62 + 02) = .5 (a  2 + a 2) = al a2. 

However,  when a 2 4: a 2 or a 2, 4: a2~, the expected value 
o f  the "adjus ted"  (Yamada  1962) denomina tor  is 

E [64 + 0~ - (01 - 02)2/2] = 

= .057 cr~ - .057 a 2 - .2 cry, + .2 a ~  + E (~,  0z).  

Now 

E (01 02) = COV (O'1, 02) + E (01) E (02) 

and because the records for traits 1 and 2 are correlat-  
ed through common genetic groups, it follows that  
Coy (6"1, 02) 4= 0. Fur ther ,  E (0i) 4: cri. Therefore  even, 
i f  a 2= cr 2 and a2, = a2,, the "ad jus ted"  denomina tor  

yields a biased est imator  of  a~ a2. 
In conclusion, Yamada ' s  (1962) method  is not well 

defined, except when cr 2 = cr 2 and cr 2, = cr2~, and should 
not be used with unbalanced data. These are very 
restrictive condit ions which preclude ut i l izat ion of  the 
procedure in general settings, par t icular ly  in animal  
breeding. 

Alternative procedure 

Schaeffer et al. (1978) presented a general  solut ion to 
the problem of  est imating correlat ions between traits 
observed in different  exper imental  units. However,  
computat ions are formidable  and require  iteration. 
Convergence may be slow or may  not occur in some in- 
stances. The procedure  suggested by Wiggans et al. 
(1980) cannot be used with some models  commonly  
encountered in animal  breeding practice. 

It is possible to obta in  unbiased est imators of  genetic 
covariance from statistics arising in Henderson 's  Meth-  
od 3. Using the example  of  the previous section, ob- 
serve in E (OB)= B-J A 0A, that  there are 2 equations 
involving trl2. F rom these, two unbiased est imators of  
a~2 can be obtained as 

0~'2 = 0 2 -  .057 02 + .057 02 - . 0 4 3  02 + .043 02, (17) 

and 

0~z* = .5 (0~ + ~ )  + .243 ( 0 ~ -  6"~) - 07 (18) 

provided that the est imators in the r ight-hand sides of  
(17) and (18) are unbiased for their  respective pa ram-  
eters. The two estimators may be combined  as 

61z = w 6~'2 + (1 - w) #f'2* (19) 

where w is a real number  usually taken in the interval 
(0, 1). The method is arbi t rary in that the combined  
estimator depends on the choice of  w. It would be 
theoretically possible to find the value of  w minimiz ing  
the sampling variance of  such a pooled es t imator  
(Eisen 1967; Gianola  1979; Grossman and Nor ton  1981; 
Ollivier 1982). However,  as pointed out by Thompson  
(1977), calculations can be intractable in the general  
case. Maximum likelihood, or variat ions thereof  as in 
Schaeffer et al. (1978), automat ica l ly  take into account 
all information avai lable (Thompson 1977). 
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